Tveggja ljóseinda gleypni acetylens

Ágúst Kvaran, Victor Huasheng Wang og Kristján Matthíasson

Raunvísindastofnun Háskólans

Vefútgáfa: 13. desember 2006

Ágrip – Eðlismunur á áhrifum einnar- og tveggja-ljóseinda gleypni acetylens er tíundaður. Óbeinni aðferð til að skrá tveggja ljóseinda gleypni acetylens með massagreiningu jóna, sem myndast í kjölfar gleypni, er lýst. Mæligögn vegna orkutilfærslna í háorku Rydberg ástönd acetylens samfara tveggja ljóseinda gleypni eru kynnt, litrófsgreind og túlkuð.

1. Inngangur

Acetylen er vel þekkt gastegund sem mikið er notuð við efnasmíðar í iðnaði og við háhitalogsuðu þar sem yfir 3300°C hiti getur myndast við bruna þess [1,2]. Sameindin er gerð úr tveimur kolefnisfrumeindum og tveimur vetnisfrumeindum með þrítengi milli kolefnisfrumeindanna og línulega sameindabyggingu (mynd 1).

Acetylen finnst í tiltölulega ríku mæli í geimnum, milli stjarna og í halastjörnum. Ljósefnafræði acetylens, sem vitað er að getur leitt til myndunar hvarfgjarnra sameindabrota á borð við C₂H og C₂, er talin geta verið uppspretta ýmissa stærri lífrænna sameinda í geimnum. Sameindin gleypir hvorki sýnilegt ljós né rafsegulbylgjur á nær-útfjólubláa litrófssviðinu. Fara verður alla leið út í fjær-útfjólubláa litrófssviðið (λ < 200 nm) til að greina gleypni vegna rafeindatilfærslna í sameindinni [3,4]. Orkuhæstu gildisrafeindir sameindarinnar eru hýstar í tveimur af 3 bindisvigrúmum CC tengisins, π svigrúmunum, meðan næstorkuhæstu rafeindirnar eru í σ svigrúmi sama tengis. Þetta er sýnt á myndrænan hátt á mynd 2.

Rafeindatilfærslur vegna gleypni á fjærútfjólubláa litrófssviðinu eru einkum á π rafeindunum í orkuhærri sameindasvigrúm sem mynduð eru úr óhýstum s eða d svigrúmum kolefnisfrumeindanna með höfuðskammtatölur stærri en 2 (n>2). Slíkar tilfærslur ráðast af valreglunni $\Delta l = \pm 1$, sem kveður á um að skammtatala brautarhverfiþunga rafeinda (l) hækki eða lækki um 1. Einnig helst innbyrðis spunastefna rafeinda óbreytt. Þetta er sýnt á mynd 3

Mynd 1. Acetylen, sameindabygging og kúlulíkan.

Mynd 2. Rafeindaskipan í bindisvigrúmum CC tengis acetylens.

Mynd 3. Áhrif einnar-ljóseindar gleypni acetylens. Tilfærsla π gildisrafeindar í orkuríkt sameindasvigrúm sem myndað er við samruna *ns*-kolefnissvigrúma (*n*>2).

fyrir ns svigrúm. Þá breytist samhverfa bylgjufalls sameindarinnar einnig með tilliti til speglunar um massamiðju.

Samtíma gleypni tvegga ljóseinda getur hins vegar yfirfært samanlagða orku ljóseindanna á sameind. Þannig má yfirfæra sömu orku vegna gleypni tveggja

Mynd 4. Áhrif tveggja-ljóseinda gleypni acetylens. Tilfærsla π gildisrafeindar í orkuríkt sameindasvigrúm sem myndað er við samruna np kolefnissvigrúma (n>2).

ljóseinda (t.d. fyrir 300 nm) og yfirfærist við gleypni einnar ljóseindar með helmingi styttri bylgjulengd (t.d. fyrir 150 nm). Í því tilviki greinist tveggja-ljóseinda gleypni acetylens á nær-útfjólubláa sviðinu [5, 6]. Tilfærslur vegna tveggja ljóseinda gleypni á nærútfjólubláa sviðinu eiga sér hins vegar einkum stað á π rafeindum sameindarinnar í orkuhærri sameindasvigrúm sem mynduð eru úr óhýstum p eða f svigrúmum kolefnisfrumeindanna með höfuðskammtatölur stærri en 2 (n>2). Slíkar tilfærslur ráðast af valreglunni $\Delta l = \pm 1$ fyrir hvora ljóseind. Einnig helst innbyrðis spunastefna rafeinda óbreytt líkt og áður. Þetta er sýnt á mynd 4 fyrir np svigrúm. Að þessu sinni helst samhverfa bylgjufalls sameindarinnar með tilliti til speglunar um massamiðju hins vegar óbreytt.

Hér á eftir verður greint frá tveggja-ljóseinda gleypnimælingum og túlkun niðurstaðna fyrir acetylen sem nýlega hafa farið fram við Raunvísindastofnun.

2. Tveggja-ljóseinda gleypnimælingar

Til að framkalla tveggja-ljóseinda gleypni sameinda er notað LASER-tæki sem gefur rafsegulgeislun með háan ljóseindaþéttleika og vel afmarkaða en breytanlega bylgjulengd. LASER-geisla-púlsum er beint í brennidepil á gassýni sem spítt er út í lofttæmdan klefa. Ef tvöföld orka ljóseinda samsvarar orkumismun milli skammtaþrepa sameindarinnar getur gleypni átt sér stað. Þriðja ljóseindin getur því næst orsakað jónun. Jónunum er beint inn í rör flugtímamassagreinis (TOF rör) með plús hlöðnu þrýstiskauti og dragskautum, þar sem þær eru greindar með jónaskynjara við enda rörsins á mismunandi tímum háð flugtíma sem ræðst af massa jónanna. Þannig fæst massaróf sem útslag í réttu hlutfalli við fjölda jóna sem fall af flugtíma eða massa. Nánar er greint frá aðferð þessari í heimildum [7–9]. Á mynd 5 sést slíkt massaróf fyrir 262.9 nm LASER-

Mynd 5. Massaróf acetylens fyrir örvun með LASER-geisla bylgjulengd 262.9 nm, vegna tveggja-ljóseinda gleypni (örvunarbylgjutala 76070 cm $^{-1}$).

Mynd 6. Massaróf tveggja-ljóseinda örvunar acetylens sem fall af örvunarbylgjutölu á bilinu 76042–76078 cm⁻¹.

geislun á acetylen. Helstu jónir sem myndast auk sameindajónarinnar ($C_2H_2^+$) eru H⁺, C⁺ og C₂⁺, en auk þess greinast jónir á borð við CH⁺, CH₂⁺ og C₂H⁺ í minna mæli.

Mynd 6 sýnir að jónamyndun er breytileg með bylgjulengd LASER-geisla eða örvunarorku. Gögn sem sýnd eru á myndum 5 og 6 má skýra með því að jónun á sér stað í kjölfar tilfærslu π gildisrafeinda í sameindasvigrúm sem mynduð eru úr 3p svigrúmum kolefnis vegna tveggja ljóseinda gleypni. Með því að skrá fjölda jóna sem fall af örvunarbylgjutölum fæst tveggja ljóseinda gleypnilitróf. Efst á mynd 7 er sýnt gleypnilitróf sem fengið er við mælingar á C₂⁺ jónum sem myndast í kjölfar tilfærslu π gildisrafeinda í sameindasvigrúm sem mynduð eru úr 4p svigrúmum kolefnis. Litrófið sýnir fíngert munstur sem ræðst af eiginleikum viðkomandi orkuástands sameindarinnar.

Mynd 7. Hermun tveggja-ljóseinda gleypnilitrófs acetylens. Efst: litróf samkvæmt mælingu á fjölda C₂⁺ jóna háð örvunarbylgjutölu (tvöföld bylgjutala LASER geisla). Neðst: Litrófslínur vegna færslna milli skammtaþrepa í grunnástandi og örvuðu ástandi; O: $J-2 \leftarrow J$, P: $J-1 \leftarrow J$, Q: $J \leftarrow J$, R: $J+1 \leftarrow J$, S: $J+2 \leftarrow J$. J eru hverfiþungaskammtatölur. Fyrir miðju: Reiknað róf samkvæmt litrófslínum fyrir 200 K, snúningsfasta örvaða ástandsins, $B=1.1086 \text{ cm}^{-1}$ og bandvídd litrófstoppa 2.0 cm^{-1} .

3. Úrvinnsla mæligagna

Hérlendis hefur verið þróað líkan af munstri slíkra litrófa [10, 11]. Það byggir á skammtafræði og víxlverkun tveggja ljóseinda við sameindir [12]. Reiknað litróf er mátað við mælt litróf uns best samræmi í útliti og munstri fæst. Þá eru forsendur líkansins skoðaðar og þær metnar til að afla upplýsinga um viðkomandi orkuástand efnisins. Á mynd 7 er sýnt reiknað litróf að undangenginni hermun, sem og litrófslínur sem munstrið byggir á. Niðurstöður sem afl-

Tafla 1. Snúningfastar og CC tengjalengdir acetylens, í grunnástandi, örvuðu ástandi (sjá texta) og á jónaformi.

Eind	$\mathrm{B}^{\mathrm{a}\mathrm{)}}/\mathrm{cm}^{-1}$	r _{cc} ^{b)} /nm	tilvísanir
$C_2H_2^+$	1.1040	0.1259	[6]
$C_2H_2^*(4p)^{c)}$	1.1086	0.1256	okkar vinna
C_2H_2	1.1766	0.1207	[6]

^{a)}Snúningsorkufasti (B) eindar ákvarðar orku skammtaþrepa skv. E(J) = BJ(J+1).

^{b)} CC tengjalengd eindar ákvörðuð út frá snúningsfasta.

 $^{\rm c)}$ Rafeindaskipan sameindarinnar er í samræmi við tilfærslu π gildisrafeindar í sameindasvigrúm sem mynduð eru úr 4p

svigrúmum kolefnis. Ástandstákn (e. term symbol) sameindarinnar er $^1\Delta.$

að er um viðkomandi orkuástand með þessum hætti varða m.a. skipan skammtaþrepa og lögun sameindarinnar. Tölulegar upplýsingar þar að lútandi er að finna í töflu 1. Samkvæmt þeim gögnum sem hér eru sýnd fæst að CC tengi sameindarinnar lengist úr 0.1207 nm í 0.1256 nm við umrædda rafeindatilfærslu og minnkandi tengjastyrk. Sú tengjalengd er áþekk því sem greinist í jóninni $(C_2H_2^+)$ (0.1259 nm).

Þakkir

Rannís, Rannsóknasjóði Háskólans og Raunvísindastofnun Háskólans eru færðar þakkir fyrir veitta styrki og stuðning vegna ofangreindrar rannsóknarvinnu.

Summary: Fundamental differences in energy transfer within the acetylene molecule due to single- and two- photon absorption is described. Indirect measurements of two-photon absorption in acetylene based on resonance enhanced multiphoton ionization and ion detection is described. Data relevant to transitions to high energy Rydberg states of acetylene due to two-photon absorption are presented, analysed and interpreted.

Heimildir

- http://www.chem.yorku.ca/hall_of_fame/ essays97/acetylene/acetylen.htm, 2004.
- [2] http://www.c-f-c.com/specgas_products/ acetylene.htm, 2004.
- [3] Herman, M. and R. Colin, The Absorption-Spectra of C₂H₂, C₂D₂, and C₂HD in the region 1260 to 1370-A. *Journal of Molecular Spectroscopy* 85(2), p. 449-461 (1981).
- [4] Herman, M. and R. Colin, High-Resolution Spectroscopic Study of the Rydberg Series of the Acetylene Isotopic Molecules. *Physica Scripta* 25(2), p. 275-290 (1982).
- [5] Ashfold, M., et al., Gerade Rydberg States of Acetylene Studied by Multiphoton Ionization and Photoelectron-Spectroscopy. J. Chem. Phys. 87(9), p. 5105-5115 (1987).
- [6] Tsuji, K., et al., Spectroscopy and predissociation of acetylene in the np gerade Rydberg states. J. Phys. Chem. A 106, p. 747-753 (2002).
- [7] Kvaran, Á., Að varpa ljósi á hið ósýnilega: Litrófsgreiningar efna og þróun. *RAUST, Tímarit um raunvísindi og stærðfræði* 1(1), p. 11-17 (2003).
- [8] Kvaran, Á. og V.H. Wang, Nýjungar í ljósgleypni: Ný sameindaástönd fundin. *RAUST, Tímarit um raun*vísindi og stærðfræði 2(1), p. 3-7 (2004).

- [9] Kvaran, Á. and H. Wang, Three- and two- photon absorption in HCl and DCl: identification of Ω = 3 states and state interaction analysis. *J. Molecular Spectroscopy* **228**(1): p. 143-151 (2004).
- [10] Kvaran, Á., H. Wang, and Á. Logadóttir, Resonance enhanced multiphoton ionization of the hydrogen halides; Rotational structure and anomalies in Rydberg and ion-pair states of HCl and HBr. J. Chem. Phys. 112(24), p. 10811-10820 (2000).
- [11] Kvaran, Á., Á. Logadóttir, and H. Wang, (2+1) REMPI spectra of $\Omega = 0$ states of the hydrogen halides; Spectroscopy, Perturbations and Excitation Mechanisms. *J. Chem. Phys.* **109**(14), p. 5856-5867 (1998).
- [12] Bray, R.G. and R.M. Hochstrasser, Two-photon absorption by rotating diatomic molecules. *Molecular Physics* 31(4), p. 1199-1211 (1976).

Um höfundana: Ágúst Kvaran er prófessor í eðlisefnafræði við Háskóla Íslands.

Victor Huasheng Wang er sérfræðingur á efnafræðistofu Raunvísindastofnunar Háskólans.

Kristján Matthíasson er doktorsnemi í efnafræði við Háskóla Íslands.

Raunvísindastofnun Háskólans Dunhaga 3 IS-107 Reykjavík agust@hi.is wang@raunvis.hi.is kristjim@hi.is

Móttekin: 15. nóvember 2004